139 research outputs found

    The complications of ‘hiring a hubby’: gender relations and the commoditisation of home maintenance in New Zealand

    Get PDF
    This paper examines the commoditization of traditionally male domestic tasks through interviews with handymen who own franchises in the company ‘Hire a Hubby’ in New Zealand and homeowners who have paid for home repair tasks to be done. Discussions of the commoditization of traditionally female tasks in the home have revealed the emotional conflicts of paying others to care as well as the exploitative and degrading conditions that often arise when work takes place behind closed doors. By examining the working conditions and relationships involved when traditionally male tasks are paid for, this paper raises important questions about the valuing of reproductive labour and the production of gendered identities. The paper argues that while working conditions and rates of pay for ‘hubbies’ are better than those for people undertaking commoditized forms of traditionally female domestic labour, the negotiation of this work is still complex and implicated in gendered relations and identities. Working on the home was described by interviewees as an expression of care for family and a performance of the ‘right’ way to be a ‘Kiwi bloke’ and a father. Paying others to do this labour can imply a failure in a duty of care and in the performance of masculinity

    Non‐negative matrix factorisation of Raman spectra finds common patterns relating to neuromuscular disease across differing equipment configurations, preclinical models and human tissue

    Get PDF
    Raman spectroscopy shows promise as a biomarker for complex nerve and muscle (neuromuscular) diseases. To maximise its potential, several challenges remain. These include the sensitivity to different instrument configurations, translation across preclinical/human tissues and the development of multivariate analytics that can derive interpretable spectral outputs for disease identification. Nonnegative matrix factorisation (NMF) can extract features from high-dimensional data sets and the nonnegative constraint results in physically realistic outputs. In this study, we have undertaken NMF on Raman spectra of muscle obtained from different clinical and preclinical settings. First, we obtained and combined Raman spectra from human patients with mitochondrial disease and healthy volunteers, using both a commercial microscope and in-house fibre optic probe. NMF was applied across all data, and spectral patterns common to both equipment configurations were identified. Linear discriminant models utilising these patterns were able to accurately classify disease states (accuracy 70.2–84.5%). Next, we applied NMF to spectra obtained from the mdx mouse model of a Duchenne muscular dystrophy and patients with dystrophic muscle conditions. Spectral fingerprints common to mouse/human were obtained and able to accurately identify disease (accuracy 79.5–98.8%). We conclude that NMF can be used to analyse Raman data across different equipment configurations and the preclinical/clinical divide. Thus, the application of NMF decomposition methods could enhance the potential of Raman spectroscopy for the study of fatal neuromuscular diseases

    Modulating mitophagy in mitochondrial disease

    Get PDF
    Mitochondrial diseases may result from mutations in the maternally-inherited mitochondrial DNA (mtDNA) or from mutations in nuclear genes encoding mitochondrial proteins. Their bi-genomic nature makes mitochondrial diseases a very heterogeneous group of disorders that can present at any age and can affect any type of tissue. The autophagic-lysosomal degradation pathway plays an important role in clearing dysfunctional and redundant mitochondria through a specific quality control mechanism termed mitophagy. Mitochondria could be targeted for autophagic degradation for a variety of reasons including basal turnover for recycling, starvation induced degradation, and degradation due to damage. While the core autophagic machinery is highly conserved and common to most pathways, the signaling pathways leading to the selective degradation of damaged mitochondria are still not completely understood. Type 1 mitophagy due to nutrient starvation is dependent on PI3K (phosphoinositide 3-kinase) for autophagosome formation but independent of mitophagy proteins, PINK1 (PTEN-induced putative kinase 1) and Parkin. Whereas type 2 mitophagy that occurs due to damage is dependent on PINK1 and Parkin but does not require PI3K. Autophagy and mitophagy play an important role in human disease and hence could serve as therapeutic targets for the treatment of mitochondrial as well as neurodegenerative disorders. Therefore, we reviewed drugs that are known modulators of autophagy (AICAR and metformin) and may effect this by activating the AMP-activated protein kinase signaling pathways. Furthermore, we reviewed data available on supplements, such as Coenzyme Q and the quinone idebenone, that we assert rescue increased mitophagy in mitochondrial disease by benefiting mitochondrial function

    Tracking early lung cancer metastatic dissemination in TRACERx using ctDNA

    Get PDF
    Circulating tumour DNA (ctDNA) can be used to detect and profile residual tumour cells persisting after curative intent therapy1. The study of large patient cohorts incorporating longitudinal plasma sampling and extended follow-up is required to determine the role of ctDNA as a phylogenetic biomarker of relapse in early-stage non-small-cell lung cancer (NSCLC). Here we developed ctDNA methods tracking a median of 200 mutations identified in resected NSCLC tissue across 1,069 plasma samples collected from 197 patients enrolled in the TRACERx study2. A lack of preoperative ctDNA detection distinguished biologically indolent lung adenocarcinoma with good clinical outcome. Postoperative plasma analyses were interpreted within the context of standard-of-care radiological surveillance and administration of cytotoxic adjuvant therapy. Landmark analyses of plasma samples collected within 120 days after surgery revealed ctDNA detection in 25% of patients, including 49% of all patients who experienced clinical relapse; 3 to 6 monthly ctDNA surveillance identified impending disease relapse in an additional 20% of landmark-negative patients. We developed a bioinformatic tool (ECLIPSE) for non-invasive tracking of subclonal architecture at low ctDNA levels. ECLIPSE identified patients with polyclonal metastatic dissemination, which was associated with a poor clinical outcome. By measuring subclone cancer cell fractions in preoperative plasma, we found that subclones seeding future metastases were significantly more expanded compared with non-metastatic subclones. Our findings will support (neo)adjuvant trial advances and provide insights into the process of metastatic dissemination using low-ctDNA-level liquid biopsy

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2‱72 (95% uncertainty interval [UI] 2‱66–2‱79) in 2000 to 2‱31 (2‱17–2‱46) in 2019. Global annual livebirths increased from 134‱5 million (131‱5–137‱8) in 2000 to a peak of 139‱6 million (133‱0–146‱9) in 2016. Global livebirths then declined to 135‱3 million (127‱2–144‱1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2‱1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27‱1% (95% UI 26‱4–27‱8) of global livebirths. Global life expectancy at birth increased from 67‱2 years (95% UI 66‱8–67‱6) in 2000 to 73‱5 years (72‱8–74‱3) in 2019. The total number of deaths increased from 50‱7 million (49‱5–51‱9) in 2000 to 56‱5 million (53‱7–59‱2) in 2019. Under-5 deaths declined from 9‱6 million (9‱1–10‱3) in 2000 to 5‱0 million (4‱3–6‱0) in 2019. Global population increased by 25‱7%, from 6‱2 billion (6‱0–6‱3) in 2000 to 7‱7 billion (7‱5–8‱0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58‱6 years (56‱1–60‱8) in 2000 to 63‱5 years (60‱8–66‱1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation: Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Global burden of 87 risk factors in 204 countries and territories, 1990Ăąïżœïżœ2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Rigorous analysis of levels and trends in exposure to leading risk factors and quantification of their effect on human health are important to identify where public health is making progress and in which cases current efforts are inadequate. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a standardised and comprehensive assessment of the magnitude of risk factor exposure, relative risk, and attributable burden of disease. Methods: GBD 2019 estimated attributable mortality, years of life lost (YLLs), years of life lived with disability (YLDs), and disability-adjusted life-years (DALYs) for 87 risk factors and combinations of risk factors, at the global level, regionally, and for 204 countries and territories. GBD uses a hierarchical list of risk factors so that specific risk factors (eg, sodium intake), and related aggregates (eg, diet quality), are both evaluated. This method has six analytical steps. (1) We included 560 riskĂąïżœïżœoutcome pairs that met criteria for convincing or probable evidence on the basis of research studies. 12 riskĂąïżœïżœoutcome pairs included in GBD 2017 no longer met inclusion criteria and 47 riskĂąïżœïżœoutcome pairs for risks already included in GBD 2017 were added based on new evidence. (2) Relative risks were estimated as a function of exposure based on published systematic reviews, 81 systematic reviews done for GBD 2019, and meta-regression. (3) Levels of exposure in each age-sex-location-year included in the study were estimated based on all available data sources using spatiotemporal Gaussian process regression, DisMod-MR 2.1, a Bayesian meta-regression method, or alternative methods. (4) We determined, from published trials or cohort studies, the level of exposure associated with minimum risk, called the theoretical minimum risk exposure level. (5) Attributable deaths, YLLs, YLDs, and DALYs were computed by multiplying population attributable fractions (PAFs) by the relevant outcome quantity for each age-sex-location-year. (6) PAFs and attributable burden for combinations of risk factors were estimated taking into account mediation of different risk factors through other risk factors. Across all six analytical steps, 30 652 distinct data sources were used in the analysis. Uncertainty in each step of the analysis was propagated into the final estimates of attributable burden. Exposure levels for dichotomous, polytomous, and continuous risk factors were summarised with use of the summary exposure value to facilitate comparisons over time, across location, and across risks. Because the entire time series from 1990 to 2019 has been re-estimated with use of consistent data and methods, these results supersede previously published GBD estimates of attributable burden. Findings: The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure. Global declines also occurred for tobacco smoking and lead exposure. The largest increases in risk exposure were for ambient particulate matter pollution, drug use, high fasting plasma glucose, and high body-mass index. In 2019, the leading Level 2 risk factor globally for attributable deaths was high systolic blood pressure, which accounted for 10·8 million (95 uncertainty interval UI 9·51Ăąïżœïżœ12·1) deaths (19·2% 16·9Ăąïżœïżœ21·3 of all deaths in 2019), followed by tobacco (smoked, second-hand, and chewing), which accounted for 8·71 million (8·12Ăąïżœïżœ9·31) deaths (15·4% 14·6Ăąïżœïżœ16·2 of all deaths in 2019). The leading Level 2 risk factor for attributable DALYs globally in 2019 was child and maternal malnutrition, which largely affects health in the youngest age groups and accounted for 295 million (253Ăąïżœïżœ350) DALYs (11·6% 10·3Ăąïżœïżœ13·1 of all global DALYs that year). The risk factor burden varied considerably in 2019 between age groups and locations. Among children aged 0Ăąïżœïżœ9 years, the three leading detailed risk factors for attributable DALYs were all related to malnutrition. Iron deficiency was the leading risk factor for those aged 10Ăąïżœïżœ24 years, alcohol use for those aged 25Ăąïżœïżœ49 years, and high systolic blood pressure for those aged 50Ăąïżœïżœ74 years and 75 years and older. Interpretation: Overall, the record for reducing exposure to harmful risks over the past three decades is poor. Success with reducing smoking and lead exposure through regulatory policy might point the way for a stronger role for public policy on other risks in addition to continued efforts to provide information on risk factor harm to the general public. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    • 

    corecore